Popular Nanofabrication - Introduction

I wrote a thesis as part of my masters degree in materials science and I was kind of surprised to see that people actually read it. The publisher sends me a report every month with the number of views and it’s about 10 each time. Not bad!

I really tried to write it in a way that could be read by someone with a background in science or engineering, but not necessarily in materials or micro/nanotech in specific. It was at least somewhat effective, because my dad read through it (though I don’t know how much he got out of my analysis of electron microscopy images).

To further increase the reach and utility of my thesis, I’m writing a little explanation on each chapter with no prerequisite other than a curiosity about science. (Similar to my post on the space elevator class project I wrote up). The first is, appropriately, on the first chapter: Background and Theory of 3D Microfabrication.

I want to start with Moore’s Law, the driving-force and self-fulfilling prophecy of consumer semiconductor fabrication. Gordon Moore was a co-founder of Intel and, in 1965, boldly stated that the number of components on a IC chip would double every year. He modestly revised that to doubling every two years a decade later, but the prediction has been roughly accurate to today. 

(Some argue that Intel, with a lack of similarly vertically-integrated competition, held back product releases to “only” meet Moore’s Law but not surpass it. But I wouldn’t have enough information on the industry to comment on such things.)

We’re running out of space to cram more transistors in and might be close to the end of Moore’s Law. However, people have been calling the end of Moore’s Law neigh for decades. Research engineers and scientists (go materials science!) have consistently proved them wrong, or we wouldn’t be using the incredible 14 nm Broadwell/Skylake chips today. 


Read More

no title

I guess peeling the cover slowly off of new electronics is too risqué for Tumblr. (it was reversed in a matter of minutes)

Read More